If you are looking for more details, kindly visit bromazolam solution.
No new data were created or analyzed in this study. Data sharing is not applicable to this article.
The rising use of designer benzodiazepines (DBZD) is a cat-and-mouse game between organized crime and law enforcement. Non-prohibited benzodiazepines are introduced onto the global drug market and scheduled as rapidly as possible by international authorities. In response, DBZD are continuously modified to avoid legal sanctions and drug seizures and generally to increase the abuse potential of the DBZD. This results in an unpredictable fluctuation between the appearance and disappearance of DBZD in the illicit market. Thirty-one DBZD were considered for review after consulting the international early warning database, but only 3-hydroxyphenazepam, adinazolam, clonazolam, etizolam, deschloroetizolam, diclazepam, flualprazolam, flubromazepam, flubromazolam, meclonazepam, phenazepam and pyrazolam had sufficient data to contribute to this scoping review. A total of 49 reports describing 1 drug offense, 2 self-administration studies, 3 outpatient department admissions, 44 emergency department (ED) admissions, 63 driving under the influence of drugs (DUID) and 141 deaths reported between and are included in this study. Etizolam, flualprazolam flubromazolam and phenazepam were implicated in the majority of adverse-events, drug offenses and deaths. However, due to a general lack of knowledge of DBZD pharmacokinetics and toxicity, and due to a lack of validated analytical methods, total cases are much likely higher. Between and April , DBZD were identified in 48% and 83% of postmortem and DUID cases reported to the UNODC, respectively, with flualprazolam, flubromazolam and etizolam as the most frequently detected substances. DBZD toxicology, public health risks and adverse events are reported.
Keywords:
benzodiazepine, designer, NPS, intoxication, poisoning, impairment, death
Benzodiazepines (BZD), important forensic and clinical toxicology drugs, are widely prescribed for neurological and psychiatric disorders and are also highly abused [1,2,3]. Discovered in the mid-s, BZD were designed as pharmacotherapies for anxiety, panic attacks, sleep disorders and epilepsy, and they have been used as myorelaxants during surgical and orthopedic procedures [4,5]. BZD are positive allosteric modulators that enhance the binding affinity of the inotropic γ-aminobutyric acid-A receptor (GABAA) for GABA, the major central nervous system (CNS) inhibitory neurotransmitter [6,7]. Unlike GABAA agonists that work directly on the receptor, BDZ increase the frequency of GABAA channel opening, depending only on the endogenously available GABA [8,9,10]. Due to controlled neuronal inhibition and lower CNS depression risk, BZD rapidly replaced older medications such as barbiturates, meprobamate and chloral hydrate, becoming the most prescribed drug class in the world during the s [11,12]. Although they possess a high therapeutic index, BZD also come with several side effects, such as drowsiness, dizziness, fatigue, dysarthria, loss of coordination, headache and amnesia, and they have the potential of being addictive [5]. Their use was recommended for a short treatment, i.e., 46 weeks for insomnia, but physicians prescribed BZD for months or years, with patients finding it difficult to stop taking these medications because of withdrawal symptoms [13,14,15,16]. Controlled clinical trials confirmed that long-term administration produced tolerance and dependence [17,18]. Due to this considerable risk of abuse, in February , the United Nations Commission on Narcotic Drugs placed 33 commercially available BZD under Schedule IV of the Convention on Psychotropic Substances [19,20,21,22,23]. BZD are abused at supratherapeutic doses to reinforce opioid euphoric effects and to alleviate the crash following stimulant abuse, or they are administrated to perpetrate drug-facilitated sexual assault, exploiting their hypnotic and amnestic side effects [16,24,25,26]. High BZD doses in combination with opioids or other CNS depressants increase the risk of death by suppression of medullary respiratory centers [27,28,29]. According to the United Nations Office of Drugs and Crime (UNODC) and the European Monitoring Centre for Drugs and Drug Addiction (EMCDDA), the concomitant non-medical use of opioids and BZD was further exacerbated by the increasing emergence of designer BZD (DBZD) [30,31].
The term DBZD is a misnomer, as the class also includes BZD marketed in only some countries, metabolites of registered BZD and structural analogues of therapeutically approved BZD [32,33]. These new psychoactive substances (NPS) have the same chemical structure as legal BZD, with an aromatic ring fused to a 1,4-diazepine ring and an aryl group in position R5 [34,35,36,37]. Slight alterations of the BZD core at different positions generated a large number of designer compounds, mainly 1,4-benzodiazepines, triazolobenzodiazepines and thienotriazolodiazepines. [6,38,39]. The newest DBZD have a triazolo ring fused to the 1,4 diazepine core and electron-withdrawing groups (bromine, chlorine, nitro etc.) in position R8 that increase the affinity for the GABAA receptor [40,41].
Compared with classical BZD, these compounds produce strong sedation and amnesia, and they increase the risk of respiratory depression and death when used in combination with other CNS depressants [41,42]. However, they are illicit, with a relatively short life cycle in the NPS market, the majority of DBZD have not undergone clinical trials and our knowledge of their pharmacokinetics and toxicity is lacking and limited to self-reported experiences [43,44]. These substances are illegally manufactured, sometimes mimic legal medicines appearance, and are purchased inexpensively on the underground drug market through online platforms that facilitate anonymous trading and bypass regulatory systems [45,46]. Phenazepam and nimetazepam were the first DBZD identified in Europe on the internet in , followed by etizolam in [47]. They are not strictly considered DBZD since they are approved for medical use in certain countries, but they have been implicated in several drug-related deaths in the United Kingdom between and [39,47]. In in Finland, pyrazolam, the first true DBZD not approved in any jurisdiction, was identified [48]. About thirty different DBZD have been reported to date to the UNODC Early Warning Advisory (EWA), with the majority of notifications received from European Countries [30,49,50,51,52,53]. According to the UNODC, bulk materials from India and China are brought into Europe where they are further processed and sold as fake alprazolam or diazepam [54]. Counterfeit Xanax (alprazolam) and erimin-5 (nimetazepam) tablets containing etizolam, flualprazolam and phenazepam were also seized in the United States (US), Australia, Singapore and Malaysia [30,55,56].
The misuse of DBDZ in conjunction with other drug use is a growing and widespread world health and safety concern [47,57,58]. The number of DBZD seizures and undercover purchases increased in the US from in to in according to the US National Forensic Laboratory Information System [59,60,61,62]. In amid shortages of classic drugs of abuse following COVID-19 restrictions, some drug users shifted from prescription sedatives to DBZD and novel synthetic opioids (NSO) [63,64,65,66]. Produced in clandestine laboratories, DBZD do not meet the same strict approval requirements as legal pharmaceuticals and may contain variable amounts of active ingredients or contaminants, i.e., NSO and other NPS [54]. Users generally are unaware of the presence of contaminants in a product, resulting in an increasing number of adverse health events for DBZD, including emergency room admissions and death investigations [67,68,69]. There is also increasing DBDZ prevalence in driving impairment and road traffic crashes [70,71]. According to the UNODC, between and April , DBZD were identified in 48% and 83% of post-mortem and Driving Under the Influence of Drug (DUID) cases, respectively, with flualprazolam, flubromazolam and etizolam as the most frequently detected substances [54,72].
Due to the high abuse potential and life-threating consequences of DBZD use, between and clonazolam, diclazepam, etizolam, flualprazolam and flubromazolam were listed in Schedule IV of the Convention of Psychotropic Substances of [73]. Based on this public health risk, this scoping review reports the most recent emergency department (ED) admissions, DUID and postmortem investigations involving DBZD, with the objective of providing useful and updated toxicology and epidemiology data about DBZD intake to improve public health and safety efforts.
Of 372 potentially relevant reports, 324 were excluded because they did not describe ED admissions, DUID or fatalities associated with DBZD use. No relevant reports were found for 4-chlorodiazepam, alprazolam triazolobenzophenone derivate, bentazepam, bromazolam, cinazepam, clobromazolam, cloniprazepam, difludiazepam, fluclotizolam, flunitrazolam, fonazepam, methylclonazepam, metizolam, nifoxipam, nimetazepam, nitrazolam, norfludiazepam, tofisopam or thionordazepam, which were therefore excluded from the results. In 49 reports 3-hydroxyphenazepam, adinazolam, clonazolam, etizolam, deschloroetizolam, diclazepam, flualprazolam, flubromazepam, flubromazolam, meclonazepam, phenazepam and pyrazolam were the sole or explicit contributory cause of poisoning, driving-impairment and death. These DBZD were included in this study ( ).
Open in a separate windowA total of 254 cases describing 1 drug offense, 2 self-administration studies, 3 outpatient department admissions, 44 ED admissions, 63 DUID and 141 deaths, reported between and , are summarized in . Age, sex, observations (i.e., symptoms, death scene information etc.), detected concentrations in biological matrices and co-exposure concentrations are also displayed.
Most patients and victims were young individuals of both sexes, often with a previous history of substance abuse and mental illness. Acute intoxications and deaths related to DBZD, alone or in combination with other drugs of abuse, were reported in Finland, Germany, Japan, Norway, Poland, Sweden, UK and USA. DBZD were screened using LC-HRMS (LC-QTOF-MS and LC-Orbitrap-MS) and quantified with LC-MS, LC-MS/MS, LC-DAD, GC-MS or GC-MS/MS.
Adinazolam or 1-(8-chloro-6-phenyl-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepin-1-yl)-N,N-dimethylmethanamine is a short acting triazolo-BZD with anxiolytic, antidepressant, anticonvulsant and sedative properties [121,122]. Clinical studies revealed that drowsiness and dizziness are commonly observed after oral administration of adinazolam up to 70 mg, resulting in significant amnestic and psychomotor effects at higher doses [123,124,125]. Adinazolam was never FDA approved and never introduced onto the public market; however, it started to emerge as an illegal designer drug in [126,127]. The first reported adinazolam-related death concerned a young woman found dead in her apartment next to five resealable bags with unidentified powders/crystals. In the US, since April , adinazolam was identified in at least three toxicology cases in association with etizolam, fentanyl and flualprazolam [128]. One male, one female and one unknown sex individual, all of whom were aged 2040 years and each either from Michigan, Mississippi or Rhode Island, were the decedents. Adinazolam was identified in postmortem blood samples but was neither quantified nor listed as the cause of death.
6-(2-Chlorophenyl)-1-methyl-8-nitro-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine, also known as clonitrazolam, is the triazolo-analogue of clonazepam [1,129]. Clonazolam is described as insanely powerful, producing strong sedation and amnesia at oral doses as low as 0.5 mg, resulting in easy accidental overdose [78]. It was found for the first time in seized yellow capsules by Swedish police on October and reported to the EMCDDA on January [51]. Two patients were admitted to ED after consuming clonazolam bought on the Internet. Clonazolam was not confirmed, and the dose was estimated based on the patients self-report. In the other four cases, clonazolam or clonazolam and etizolam (one case) were identified. The primary adverse effect was CNS depression.
Deschloroetizolam is a short-acting thienotriazolodiazepine that differs from etizolam by the absence of a chlorine on the benzene ring with consequent reduced potency [1]. On 1 September , the UK Focal Point reported that the substance was confirmed after analysis of a blue seized tablet [50]. There are few data available on deschloroetizolam. In a self-administration study, one of the authors ingested one-half pink tablet of deschloroetizolam, about 6 mg, bought on the Internet [79]. After 15 min, the subjects overall behavior changed rapidly; both physical and cognitive effects were described. Oral fluid was collected after 30 min. Deschloroetizolam and diclazepams metabolites, lorazepam and lormetazepam, were detected in a young male. The subject was found dead with injection materials and several small plastic bags labelled with different DBZD [81].
Diclazepam, or 2-Chlorodiazepam, is the 2-chloro derivative of diazepam and the positional isomer of 4-chlorodiazepam [84]. It was reported to EMCDDA by Germany in August [49]. In two of three cases displayed, subjects were admitted to the ED in a severe state of agitation and disorientation; diclazepam was detected along with stimulants and dissociatives. In the third ED admission, diclazepam was the sole drug reported. Symptoms of intoxication were mainly characterized by CNS depression and a withdrawal syndrome. The patient reported having ingested two 30 mL vials of 4 mg/mL diclazepam (240 mg) purchased online. Again, 13 drivers apprehended for DUID submitted to a clinical test of impairment (CTI). The level of impairment was assessed based on the single test results and the individuals general condition. Common signs of impairment were found for alertness, appearance, cognitive function, motor coordination and vestibular function. Heide et al. report four additional DUID cases. Subjects were aged between 30 and 39 years; sex was not specified, and diclazepam was found in blood at concentration ranging from 5.4 ng/mL to 32 ng/mL [86]. The subjects did not show impairment. The only death reported involved a young man with a history of methamphetamine use found deceased at home. He previously told a friend that at times he took etizolam. Retrospective quantitative analysis revealed the presence of diclazepam and flubromazolam, along with opioids and stimulants. In addition, in , a French patient was admitted to the ED after ingestion of two pills labelled diclazepam and 2-aminoindane bought on the Internet. Upon clinical examination, the patient was anxious, but the anxiety resolved, and the patient was discharged the same day [130]. Diclazepam was neither confirmed nor quantified.
Etizolam, or 4-(2-chlorophenyl)-2-ethyl-9-methyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-α][1,4]diazepine, is a short-acting thienotriazoldiazepine introduced in under the trade name Depas® [131,132]. It is currently used in India, Italy, Japan and Korea for the short-term treatment of insomnia, anxiety and panic attacks, but it is not approved for medical use elsewhere [55,71]. It was reported to EMCDDA in December by UK [133]. Three intoxications required ED admission. Three children were found drowsy and wobbly after eating colored pills thought to be candies. Etizolam was confirmed in one patients urine. In addition, a subject was found unconscious next to a syringe of heroin. He had previously ingested a large quantity of etizolam tablets. Three patients with psychiatric disorders presented at an outpatient department for etizolam detoxification after exhibiting tolerance and withdrawal. Etizolam was prescribed or illegally obtained in one case and was taken at supratherapeutic doses. For six DUID cases, three were apprehended drivers undergoing CTI, while three drivers were stopped for impaired driving and underwent a standardized field sobriety test (SFST). These results supported the diagnosis of motor and functional impairment. The other two males, ages 34 and 19 years, underwent CTI [85]. Etizolam was found in blood at concentrations of 31 ng/mL and 120 ng/mL, respectively; however, impairment was impossible to determinate or not reported. A total of 34 deaths were reported. In five cases, etizolam was found in association with diclazepam, (one case), flubromazepam (one case), flubromazolam (two cases) and flualprazolam and flubromazolam in one case. In 33 cases the cause of death was reported as accidental overdose due to polydrug toxicity; subjects were known drug users or had a history of mental disorders. In the remaining case [92], the subject was found dead in the bathroom with a suicide note in her diary. In these nine cases [92,95,97], etizolam was detected in peripheral blood at concentrations of 1237 ng/mL. Subjects were seven males and two females between 22 and 61 years of age, residing in Japan, the UK or the US. However, etizolam was not listed as the cause of death.
Flualprazolam is the ortho fluorine analogue of alprazolam that was reported to the EMCDDA by Swedish police in January [99]. Seven young patients were transported to the ED after ingesting a BZD thought to be alprazolam. Three patients exhibited sedation and verbal impairment, two CNS depression, and two were asymptomatic. In three cases the presence of flualprazolam was not confirmed. Another thirteen DUID cases were reported. One individual was subjected to the CTI while twelve other drivers underwent SFSTs. Considerable motor and functional impairment were observed. Two biological samples screened positive for etizolam. Furthermore, Papsun et al. reported an additional 11 DUID [101]; however, demographic information and flualprazolam blood concentrations were not available. A total of 38 deaths were reported. All cases had multiple drugs; one was also positive for etizolam. In 36, the cause of death was listed as accidental overdose due to multiple drug toxicity, while in 2 cases they were ruled intentional flualprazolam poisonings. Furthermore, there were 28 additional deaths in which flualprazolam was not listed as the cause of death; these include 5 decedents from Finland, 13 from Sweden and 10 from the US. Flualprazolam blood concentrations ranged from 3 ng/mL to 620 ng/mL [101,102].
For more pmk synthesisinformation, please contact us. We will provide professional answers.
7-Bromo-5-(2-fluorophenyl)-1,3-dihydro-2H-1,4-benzodiazepin-2-one, well known as flubromazepam, was detected for the first time in ten seized capsules in Germany and reported to the EMCDDA in March [49]. Four subjects were admitted to the ED in a profound state of agitation and delirium, followed by rigidity and CNS depression. In one case, flubromazepams depressant effect was mitigated by the presence of methoxyphenidine. Only one DUID was reported. The driver was mildly impaired based on the CTI. Another apprehended, a 22-year-old driver, had a flubromazepam blood concentration of 7 ng/mL but did not show impairment on his CTI [86]. Only a single death case is included for flubromazepam. This young man was admitted to the ED in a severe state of CNS depression requiring resuscitation and mechanical ventilation; he died after six days of hospitalization. Flubromazolam and U-, which was also detected, were listed as the cause of death.
Flubromazolam is the triazolo-derivate of flubromazepam. It was identified in Sweden in 10 seized white tablets labelled XANAX and reported to EMCDDA in October [50]. It possesses strong and long-lasting depressive effect on the CNS. Eighteen patients were admitted to the ED in a severe state of CNS depression with functional and motor impairment. In 16 cases, flubromazolam was the sole drug detected, while in 2 cases subjects were also positive for meclonazepam. One patient required three days of hospitalization. After logical verbal contact was established, he admitted that he bought flubromazolam on the Internet and consumed about 3 mg approximately 19 h before ED admission [106]. Eleven flubromazolam DUID cases were reported; in two, driving impairment was assessed by CTI, while in the remaining nine, a SFST was performed by officers. Motor and functional impairment was evident in all subjects. Flubromazolam was listed as a contributory cause of death in four cases. Abdul et al. reported two additional deaths in which flubromazolam was found in femoral blood at concentrations of 8 and 16 ng/mL [108]. The two male decedents were 32 years old and 46 years old. The cause of death was not flubromazolam toxicity. Flubromazolam pharmacokinetics were assessed in a self-administration study. One of the authors ingested a 0.5 mg capsule of flubromazolam. During the following 24 h, the author observed strong sedation and considerable memory impairment.
Meclonazepam is structurally related to clonazepam and was reported for the first time to EMCDDA in August after identification in 145 seized capsules in Sweden [50]. A young man was admitted to the ED in December after ingesting approximately 100 tablets (600 mg) of meclonazepam. The subject was awake but not completely lucid.
Phenazepam, also known as Bonsai, Zannie or Supersleep, is a long-acting benzodiazepine developed in the s and currently used as an anxiolytic, hypnotic and for the treatment of Alcohol Withdrawal Syndrome in the former USSR [134]. Phenazepam was reported to EMCDDA in July by Germany and UK. It is metabolized to the active metabolite 3-hydroxyphenazepam by different isoforms of CYP450 [114,135]. 3-Hydroxyphenazepam was identified in a seized white tablet and reported in October by Denmark. Three subjects were admitted to the ED after ingesting illicit phenazepam purchased on the Internet. Patients exhibited both motor and functional impairment and depressant effects. One patient had Aspergers syndrome [110]. In May , a patient was admitted to the ED after ingesting four tablets of 3-hydroxyphenazepam. There also are 19 DUID and a drug offense cases included in . Of these, 11 underwent SFST, 5 had roadside drug tests, 3 CTI, while 1 driver refused to perform SFST, and symptoms of impairment were provided by the officers observations. Moderate to considerable motor and functional impairments were evident in all drivers. Heide et al. reported one additional DUID of a young driver submitted for CTI [86] who also had a phenazepam blood concentration of 120 ng/mL. The driver passed his CTI and was declared not impaired. Of sixty deaths reported, phenazepam alone was listed as the sole cause of death in two cases, while the remaining were attributed to accidental overdose due to polydrug toxicity.
Pyrazolam is the triazolo analogue of bromazepam that was identified in Finland in 10 white tablets and notified to EMCDDA in August [136]. In February , a young man was found dead in an advanced state of putrefaction next to five plastic bags labelled pyrazolam, diclazepam, 3F-phenmetrazine, 1-(2-fluorophenyl) propan-2-amine and diphenhydramine hydrochloride, as well as one unlabelled bag. Asphyxia promoted by polydrug intoxication was listed as the cause of death.
Seventy percent of the new DBZD were introduced into the European Union (EU), representing about thirteen percent of worldwide NPS seizures [137]. The EU market is dominated by a handful of these, most notably clonazolam, diclazepam, etizolam, flualprazolam, flubromazolam and phenazepam [31,58,64,138,139,140]. Etizolam, in particular, is the street BZD that is most often implicated in drug related deaths. In Scotland, its numbers grew from 223 in to 752 in [141]. DBZD are a worldwide growing public health concern. In the US, more than cases regarding clonazolam, etizolam and flualprazolam were reported in the US NFLIS from Federal, State and local laboratories between October and December [142]. The Center for Forensic Sciences Research and Education confirmed this trend for the first quarter of , underlining the popularity of flubromazolam [143]. Etizolam, flualprazolam and flubromazolam were recently identified in counterfeit Xanax tablets in Canada, and their use is increasing also in Central and South America, mainly in Brazil, Chile and Paraguay [54,144]. Surprisingly, no updated data on DBZD are available from Asia, although most NPS are synthesized in this area of the world. However, a small number of DBZD may be sourced from companies in India, typically as finished medicinal products [54,145,146,147].
According to the UNODC, the highest public health risk around the world is from etizolam, flualprazolam, flubromazolam and phenazepam [54,72]. DBZD are widely available on the Internet in different forms, i.e., blotters, liquids, pills, powders and tablets, and sold at low prices [148]. Etizolam and phenazepam are further diverted from the regulated market and illegally imported from those countries where they are licensed therapeutic drugs [138,149]. For most NPS placed under international control, the number of reports decreased rapidly the year after the scheduling decision [150]. However, for flualprazolam, phenazepam, flubromazolam and etizolam, enforcement was delayed two, five, seven and nine years, respectively, after formal notification [73]. The social harms produced by these drugs long residence on the illicit market are characterized by an increasing rate of DBZD-related deaths, involvement of criminal activity, violence, risk-taking behavior, suicide attempts and concurrent substance use disorders [151,152].
Only cases in which DBZD were the sole or a contributory cause of intoxication, impairment or death are included in , which evaluates global DBZD intake. This facilitates review of the biological concentrations in the different types of cases. Clinicians are unaware of DBZD and their contribution to drug overdoses and deaths, sometimes leading to incorrect interpretations of cause of death. Clinicians should be asking patients about substance abuse including NPS and DBZD during routine preventive care and ED visits. The patients may not be aware of the identity or concentration of DBZD in a drug product before suffering symptoms of intoxication [135]. When a DBZD is the only drug identified, it provides the opportunity to characterize its associated sedative-hypnotic toxidrome as seen in cases [45,74,77,79,80,82,84,85,86,89,90,91,98,106,109,111,113,115].
However, since few pharmacokinetics studies were performed [82,109], it is currently hard to associate concentrations in biological matrices with presumable related adverse-effects. To date, correlations between dose and response, duration of action, metabolism, and onset of action are still poorly understood, making it harder for users to accurately dose the compound they purchased, increasing the prospect of potential intoxication. The slow elimination and the hepatic transformation in active metabolites of certain DBZD (i.e., flubromazolam and phenazepam) are responsible of their accumulation in lipid-based tissues, which can lead to a delayed overdose in cases of repeated consumption [44,82,91,152,153]. There was overlap between diclazepam, etizolam and phenazepam blood concentrations in impaired and non-impaired drivers [85,86]. Similarly, blood etizolam and flualprazolam concentrations were similar in DUID cases and deaths [86,92,101,102]. This may reflect differences in tolerance that appear after frequent drug exposure. In other cases, there is too little information or analytical data to improve our knowledge about the DBZD [74,83,104], and in many cases, because polypharmacy is the rule rather than the exception, it is not possible to assign causation to a single drug because the death is due to the drug combination [78,86,88,100,101,112]. On the other hand, it is also possible that many individuals exposed to DBZD never developed significant adverse events [154]. However, a major problem is knowing that in many cases the DBZD will never be detected due to a lack of analytical method capability or even just to unawareness of the presence of this class of NPS. Furthermore, the newest DBDZ may have high cross-reactivity with common BZD immunoassays, which often do not distinguish between designer and prescribed BZD. Metabolism to licensed BZD, the sale of metabolites of prescribed BZD and the unavailability of confirmatory testing in health care centers pose the risk of an incorrect interpretation of analytical findings [5,127,155,156,157]. The roles DBZD play in deaths remains poorly understood, and how different pathologists and toxicologists attribute and interpret cause of death is largely unknown. For attributing the cause of death, each case must be assessed individually, taking into account the circumstances surrounding the death, drug tolerance and postmortem redistribution. [119,158,159]. The present data should inform interpretation of DBZD-related deaths and apprise law enforcement, clinicians and ED personnel on the dangers of DBZD.
31 DBZD were selected after consulting the UNODC Early Warning Advisory on NPS portal, the European Database on New Drugs, the US National Poison Data System and the Japanese Data Search System for NPS. Thereafter, a comprehensive literature search was performed using PubMed, Scopus, Google Scholar and Web of Science bibliographic databases to identify scientific reports on ED admissions, DUID and fatalities associated with DBZD use. Database-specific search features with truncations (represented by an asterisk) and multiple keywords (represented by quotation marks) were employed. The search terms employed were: acute, abuse, access* to emergency department, adverse effect*, diversion, driving under the influence of drug*, DUID, fatal, illegal market, intoxication*, lethal, misuse, overdose*, prescription, poison*, report*, schedule*, seizure* or traffic in combination with 3-hydroxyphenazepam, 4-chlorodiazepam, adinazolam, alprazolam triazolobenzophenone derivative, bentazepam, bromazolam, cinazepam, clobromazolam, cloniprazepam, clonazolam, deschloroetizolam, diclazepam, etizolam, flualprazolam, flubromazepam, flubromazolam, fluclotizolam, flunitrazolam, fonazepam, meclonazepam, metizolam, methylclonazepam, nimetazepam, nifoxipam, nitrazolam, norfludiazepam, norflunitrazepam, phenazepam, pyrazolam, thionordazepam or tofisopam. Further studies were retrieved from the reference list of selected articles and from reports from international institutions such as the World Health Organization (WHO), the EMCDDA, the US Drug Enforcement Administration (DEA) and the US Food and Drug Administration (FDA). Articles written in English and only one in Swedish were included. Databases were screened through March and references were independently reviewed by one of the authors to determine their relevance to the present article.
The outbreak of DBZD is a rising health and social concern. Clinical and forensic toxicologists are on the front line, in cooperation with public health safety institutions, to identify emerging DBZD in cases of intoxication, drug offenses and unexplained deaths. In order to decrease the availability of these substances in the global illicit drug market, more effort is needed by early warning agencies to reduce the timing between formal notifications and scheduling decisions. Further studies, professional training and analytical development are required to reduce the undercounting and underreporting of the cases in order to obtain robust and consistent epidemiological data.
Conceptualization, M.A.H. and F.P.B.; investigation, P.B.; data curation, P.B. and M.A.H.; writingoriginal draft preparation, P.B.; writingreview and editing, P.B., M.A.H. and F.P.B.; supervision, R.G. and A.T. All authors have read and agreed to the published version of the manuscript.
This review was partially funded by the Italian Presidency of Ministers Council, Department of Antidrug Policy.
Not applicable.
Not applicable.
No new data were created or analyzed in this study. Data sharing is not applicable to this article.
The authors declare no conflict of interest.
Publishers Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Public laboratories must balance innovative and existing methods to keep up with designer drug trends. This article presents a strategy for handling designer benzodiazepines (DBZDs) in casework from screening to interpretation. The cross-reactivity of 22 DBZDs and metabolites was tested against the Immunalysis benzodiazepine (BZD) direct enzyme-linked immunosorbent assay kit. The kit had high intra-analyte precision (coefficients of variation <15%). Inter-analyte performance varied, triggering confirmation testing at concentrations ranging from 35 to 460μg/L. The Cuyahoga County Regional Forensic Science Laboratory implemented a 40-analyte BZD and Z-drug confirmation method in . Ten additional analytes were later validated for qualitative reporting, and the limits of detection for 13 analytes were lowered by 60%. The method of standard addition was also optimized for as-needed quantitation. Equal and 1/x weighting factors correlated well with target concentrations (coefficients of determination (r2)>0.98), but 1/x weighting provided the most consistently accurate concentrations. Six computational models were developed to predict γ-aminobutyric acid-A receptor binding affinity to assist in case interpretation (r2>0.70 for cross-validation and test set prediction). These models were used to predict the binding affinity of analytes in the confirmation method. Other public laboratories can use this same practical strategy to adapt to any designer drug class (e.g., BZDs, opioids, cannabinoids and stimulants).
Want more information on -18-0 quotes? Feel free to contact us.