Biodegradable Resins

06 May.,2024

 

Biodegradable Resins

Terratek BD Biodegradables

Industrial Compostable | Home Compostable

Contact us to discuss your requirements of biodegradable resin supplier. Our experienced sales team can help you identify the options that best suit your needs.

Blown & Cast Film

Injection Molded Products

Sheet & Thermoforming

Terratek® BD3300 Straw formation

Blown & Cast Film

Injection Molded Products

Sheet & Thermoforming

Terratek® BD3300 Straw formation

Biodegradable resins are capable of playing a key role on our path to sustainable plastic production. While they will never completely eliminate the problem of plastic waste (since they are not suitable for all product applications), biodegradables can nevertheless be an important tactic in reducing pollution and waste in some instances.

The ability to compost single-use products like food service ware and packaging items, such as bags and films, ensures that plastic waste won’t remain on the planet for hundreds of years, reduces the amount of methane gas emitted from landfills and could help to prevent humans from needing to designate ever-larger parcels of land for trash disposal. According to the United Nations Environmental Programme (UNEP), between 22 and 43 percent of plastic consumed globally finds its way into landfills. Biodegradable resins could help to bring this number down, reducing one of the longest lasting impacts of our plastic use.

Because plastic waste has a tendency to end up in our parks, waterways and other sensitive ecosystems, it’s important to verify when shopping for biodegradable resins that “biodegradable” does not simply mean the capability to disintegrate into pieces invisible to the naked eye. True biodegradability means the ability to be broken down by bacteria of other organisms. Since the rise of green consumer preferences and government regulations have many companies working to improve their environmental footprint, it’s important to verify that a material meets industry standards for actual biodegradability, as well as biobased content.

Industry Resources

Third Party Certifications for Biodegradability and Biobased Content

Biodegradable and compostable alternatives to ...

Making or calling a product biodegradable has no inherent value if the product, after use by the customer, does not end up in a waste management system that uses the biodegradability features (Narayan 1993, 1994). illustrates the integration of biodegradable plastics with disposal infrastructures that use this biodegradable function of the plastic product.

Safety: the resultant compost should have no impacts on plants, using OECD Guide 208, Terrestrial Plants, Growth Test or similar, such as PAS 100 ( BSI 2002 ). Furthermore, regulated (heavy) metals content in the polymer material should be less than defined thresholds e.g. 50 per cent of EPA (USA and Canada) prescribed threshold.

Time—180 days or less (ASTM D6400 also has the requirement that if radiolabelled polymer is used and the radiolabelled evolved CO 2 is measured, then the time can be extended to 365 days).

Ninety per cent conversion of the carbon in the test polymer to CO 2 . The 90 per cent level set for biodegradation in the test accounts for a ±10 per cent statistical variability of the experimental measurement; in other words, there is an expectation for demonstration of a virtually complete biodegradation in the composting environment of the test.

Based on the above concepts, the ASTM committee D20.96 on Biobased and Environmentally Degradable Plastics ( www.astm.org ) developed a Specification Standard D6400 (see also D6868) for products claiming to be biodegradable under composting conditions or compostable plastics ( ASTM, 2002 ). The above specification standard is in harmony with standards in Europe, Japan, Korea, China and Taiwan. EN13432 ‘Requirements for Packaging Recoverable through Composting and Biodegradation—Test Scheme and Evaluation Criteria for the Final Acceptance of Packaging’ is the European standard (norm) and similar to D6400. The current UK standard BS EN 13432 (2000) covers the requirements for packaging recoverable through composting and biodegradation and test scheme and evaluation criteria for the final acceptance of packaging. At the international level, the International Standards Organization (ISO) has developed ISO 17088, ‘Specification for Compostable Plastics’ which is in harmony with these European and US norms.

Thus, a measure of the rate and amount of CO 2 evolved in the process is a direct measure of the amount and rate of microbial use (biodegradation) of the C-polymer. This forms the basis for various international standards for measuring biodegradability or microbial use of the test polymer/plastics. The rate and extent of biodegradation or microbial use of a test plastic material can be measured by using it as the sole added carbon source in a test system containing a microbially rich matrix-like compost in the presence of air, and under optimal temperature conditions (preferably at 58°C—representing the thermophilic phase). shows typical data obtained when the per cent carbon released (as CO 2 ) from a bioplastic exposed in a composting environment is plotted as a function of time. First, a lag phase occurs during which the microbial population adapts to the available test C-substrate. Then follows the biodegradation phase during which the adapted microbial population begins to use the carbon substrate for its cellular life processes, as measured by the conversion of the carbon in the test material to CO 2 . Finally, the output reaches a plateau when use of the substrate is largely complete.

Therefore, designing hydrophobic polyolefin plastics like PE to be degradable, without ensuring that the degraded fragments are completely assimilated by the microbial populations in the disposal infrastructure in a short time period, has the potential to harm the environment more than if it was not made degradable. Heat, moisture, sunlight and/or enzymes can shorten and weaken polymer chains, resulting in fragmentation of the plastic and some cross-linking, creating more intractable persistent residues. It is possible to accelerate the breakdown of the plastics in a controlled fashion to generate these fragments, some of which could be microscopic and invisible to the naked eye, and some elegant chemistry has been done to make this happen as reported in the literature ( Scott & Wiles 2001 ). However, this degradation/fragmentation is not biodegradation per se and these degraded, hydrophobic polymer fragments pose potential risks in the environment unless they are completely assimilated by the microbial populations present in the disposal system in a relatively short period.

A number of polymers in the market place are designed to be degradable, i.e. they fragment into smaller pieces and may even degrade to residues invisible to the naked eye. While it is assumed that the breakdown products will eventually biodegrade, there are no data to document complete biodegradability within a reasonably short time period (e.g. a single growing season per year). Hence hydrophobic, high surface area plastic residues may migrate into water and other compartments of the ecosystem. In a recent science article, Thompson et al. (2004) reported that plastic debris around the globe can erode (degrade) away and end up as microscopic granular- or fibre-like fragments, and that these fragments have been steadily accumulating in the oceans. Their experiments show that marine animals consume microscopic bits of plastic, as seen in the digestive tract of an amphipod. The Algalita Marine Research Foundation (see www.algalita.org/pelagic_plastic.html ) reports that degraded plastic residues can attract and hold hydrophobic elements like polychlorinated biphenyls (PCB) and dichlorodiphenyltrichloroethane (DDT) up to 1 million times background levels. The PCBs and DDTs are at background levels in soil, and diluted out, so as to not pose significant risk. However, degradable plastic residues with these high surface areas concentrate these chemicals, resulting in a toxic legacy in a form that may pose risks in the environment. Japanese researchers ( Mato et al. 2001 ) have similarly reported that PCBs, DDE and nonylphenols (NP) can be detected in high concentrations in degraded PP resin pellets collected from four Japanese coasts. This work indicates that plastic residues may act as a transport medium for toxic chemicals in the marine environment (see discussion in Teuten et al. 2009 ).

Composting has the potential to transfer biodegradable waste, including biodegradable plastics, into useful soil amendment products. Composting is the accelerated degradation of heterogeneous organic matter by a mixed microbial population in a moist, warm, aerobic environment under controlled conditions. Biodegradation of such natural materials will produce valuable compost as the major product along with water and CO 2 . The CO 2 produced does not contribute to an increase in greenhouse gases because it is already part of the biological carbon cycle. Composting is also an important disposal infrastructure because it can receive other bio-based wastes in addition to biodegradable plastics—for example, more than 50 per cent of the MSW stream is typically garden and food waste and non-recyclable paper products.

Concerns over the potential ecotoxicity of degradation products have resulted in the formulation and adoption of suitable international standards for compostable polymer products. For example, EN 13432 requires that compostable polymer materials have to fulfill European, or where none exist, national requirements for compostability. In December 2003, the Composting Association in the UK launched a Certification Scheme for Compostable Packaging in order to assist UK Local Authorities with the selection of sacks for organic waste collections. As there is currently no European standard on compost quality (besides the ecological criteria for the award of the EU Eco-label), the UK adopted the BSI PAS 100 in November 2002 ( BSI 2002 ). Other standards such as the ASTM D6400 and ISO 17088 also define product classification and requirements for composts.

Although the ABPR does not apply to sites accepting only green botanical garden waste, many UK Local Authorities have already started mixed organic waste (garden and kitchen) collections or are considering mixed collections in order to meet legislative targets. For mixed organic waste collections, the majority of the material collected is from botanical sources; however, due to the presence of kitchen/catering waste all the waste must be composted in-vessel in order to meet the requirements. Local Authorities could collect the organic botanical waste separately from the kitchen-derived waste, but this has extensive logistical and cost issues (separate vehicles, crew and composting facility). In-vessel composting is more costly than the open-windrow methods commonly adopted in the UK for pure ‘green waste’. This results in increased composting costs per tonne, gate fees charged to Local Authorities and reduction in the competitiveness of in-vessel composting against other treatment and disposal options such as landfill.

If you are looking for more details, kindly visit pbat.

Some legislation, however, imposes a number of constraints on the composting industry. In May 2003, the Animal By-Products Regulation (ABPR) started the UK implementation of an EU Regulation. The ABPR divides animal by-products into three categories and stipulates the means of collection, transport, storage, handling processing and use or disposal for each category: category 1, highest risk materials such as carcasses infected with BSE, scrapie, etc.; category 2, also high-risk materials such as animals that die on farms and animals that are unfit for human consumption; and category 3, materials that are fit (but not intended) for human consumption such as fish, milk, parts of slaughtered animals, etc. Household kitchen waste and, by association, biodegradable food packaging (because it has come into contact with food, meat or non-meat) are classified under Category 3. Categories 2 and 3 materials may be composted or treated via anaerobic digestion following strict requirements on handling, temperature and retention times.

Householder surveys indicated that 82 per cent of Kassel's population could clearly identify the logo printed on compostable polymers and 90 per cent supported the replacement of conventional plastic packaging with compostable packaging. The success of this programme has created a demand for further products that can be digested/degraded in the same way as ‘conventional’ organic waste. The benefits for this are twofold: (i) increased separation and collection efficiency (household or centralized) and (ii) reduced amount of waste to landfill or incineration.

In a large-scale study from March 2001, in Kassel, Germany, BDP packaging was introduced into the local retail trade ( Klauss 2001 ). The purpose of this scheme was to introduce biodegradable packaging and manage its source separation by householders so that it could be collected with the organic waste stream to produce compost. The scheme required much planning prior to the launch, to ensure that the public had received sufficient information about the BDPs, their labelling, separation and collection. The mixed packaging and organic waste was composted at a full-scale composting site and was undertaken at a commercial level. The compost feedstock was monitored to ensure a relatively low proportion of one plastic to 99 parts organic waste on a weight basis. The compost produced showed no differences in terms of quality parameters compared with conventional compost comprising solely green waste (no BDPs) and had the same positive effects on soil and plant characteristics ( Klauss & Bidlingmaier 2004 ).

The treatment of biodegradable plastics by composting is now considered in many parts of the world to be an appropriate form of material recovery. In the UK, it is a permitted recovery option specified in the Producer Responsibility (Packaging Waste) Regulations as amended in 1997.

(c) Home (domestic) composting

In the UK, home composting has been identified by the Strategy Unit of the Cabinet Office as one of five key measures to reduce the growth rate of household waste (Anon. 2002; Murphy & Bartle 2004). In addition to kitchen and garden waste, home composting of biodegradable packaging materials could divert waste from municipal collection systems and complement industrial composting. It must be noted that it is difficult to regulate home composting, and anaerobic composting conditions occurring in poorly managed systems will result in the generation of methane. Moreover, home composting using compost bins or heaps is more variable and less optimized than industrial composting and the temperature achieved is rarely more than a few °C above ambient temperature. Under such conditions, certain compostable materials certified for industrial composting (EN13432) may not biodegrade sufficiently. The ‘OK Compost Home’ standard, which repeats the EN13432 test protocol at ambient temperature, as shown in , has been established by AIB-VINÇOTTE in Brussels (www.aib-vincotte.com). These temperature conditions do not reflect true composting process principles which require them, by definition, to go through a thermophilic phase (55–65°C) that can last from a few days to a couple of months depending on the composting volume. The thermophilic phase of composting is of importance to ensure the destruction of thermosensitive human and plant pathogens, fly larvae and weed seeds. Regulations by the US Environmental Protection Agency specify that to achieve a significant reduction of pathogens during composting, the compost should be maintained at minimum operating conditions of 40°C for 5 days, with temperatures exceeding 55°C for at least 4 h of this period.

Table 1.

industrial composting (EN 13432)home composting (vincotte certification)biodegradationtest at 58°C in 180 daystest at 20–30°C in 365 daysbiodegradation min. 90%biodegradation min. 90%disintegrationtest at 58°C in 90 daystest at 20–30°C in 180 dayssieve 2 mm meshsieve 2 mm meshdisintegration >90%disintegration >90%max. 10% of dry weight allowed to be retained by 2 mm sievemax. 10% of dry weight allowed to be retained by 2 mm sievecertificationDin Certco/OK CompostOK HomeOpen in a separate window

Some bioplastic polymers, particularly used as bags and pots for horticulture or waste collection bag applications, have been certified by the OK Compost Home scheme while others passed only ‘OK Compost’ standard for industrial composting (http://www.aib-vincotte.com/data) and are not suitable for home composting. This distinction is important and it is vital that clear guidance is communicated to the public who may otherwise assume that any products labelled as ‘biodegradable’, ‘compostable’ or ‘eco-’ under the numerous certification systems can simply be put into their home or garden compost bins. These are unlikely to reach the thermophilic compost temperatures required for both suitable degradation of certain materials and to achieve sanitization.

New research to characterize the extent of biodegradation when a range of biodegradable or potentially biodegradable packaging materials are disposed of in simulated home composting typical of the UK is presented briefly below. The objective was to establish whether potentially biodegradable packaging materials would show appropriate levels of biodegradation when exposed to ‘typical’ home compost conditions (non-thermophilic) together with green garden waste. Small specimens of 12 bio-based materials (six were from materials used commercially and six were from developmental materials that were designed to be biodegradable—see ) were assessed as material weight loss over a 24-week winter/spring period between November and May in the southeast of the UK. Whole food packaging units (trays/plate) made from three of the materials were also assessed under the same conditions but were mixed directly into the compost matrix.

Table 2.

namecommercial (C)/experimental (E) materialmaterialprincipal components (wt%)small samplewhole unitrate of degradationpotato starchCpotato starch-based traypotato starch (<75%)✓✓faststarch laminateCstarch-based tray with a starch/PCL laminatestarch; starch PCL surface overlay✓fastpaperCpressed wood pulp platewood pulp 70%; starch size 20%; other 10%✓✓mediumsilvergrassCpressed silvergrass pulp plateMiscanthus spp. pulp✓fastcoconutCmoulded coconut fibre trayCocos nucifera fibre✓mediumrecycled paperCmoulded recycled paper pulp trayrecycled paper✓mediumPLAEPLA tray100% PLA✓✓slowstarch/PCLEstarch/PCL—extrudate sample100% starch/PCL✓slowPP(A)EPP with biodegradability additive A90% PP; 10% bio-additive A✓slowPP(B)EPP with biodegradability additive B90% PP; 10% bio-additive B✓slowPP(B)+EPP with biodegradability additive B plus chalk filler60% PP; 10% bio-additive B; 30% chalk✓slowPP/starchEPP compounded with starch granules88% PP; 10% starch granules; 2% other✓slowOpen in a separate window

The composting was undertaken outdoors in the home-composter, lidded ‘cone’ systems (volume 160 l) filled with a ‘base mixture’ of approximately 60 per cent green herbaceous and grass clippings and 40 per cent chopped ‘woody’ herbaceous material from the local site that was free of pesticides or herbicides and had previously been composted for 30 days to establish an active microflora/fauna. Twelve packaging materials (approx. 25 × 25 mm sheets) were individually secured into nylon mesh bags and replicate specimens placed into a stainless steel rack for easy retrieval. The sample racks were inserted in the middle of a composting bin between layers of base mixture (approx. 600 mm below the compost mixture surface). Three replicate composter units were established with three replicate specimens of each material removed per composter per sampling time. Additional six composter bins were set up, two of each with 6.4 wt% of one of the three main packaging materials (potato starch trays, PLA trays and paper plate) as whole units mixed in with the green waste base mixture. Two further composter bins containing only the compost base mix and no added biodegradable packaging materials were used as controls for a subsequent seed germination comparison.

The composters were sampled on a monthly basis from November to May for determination of specimen mass loss and MC (od basis), temperature and overall compost volume reduction. Replicate samples of the small test materials or whole units were removed at each sampling interval. ‘Turning’ of the composts was done only on these occasions.

A bioassay of the composts from the whole packaging unit test and the control compost was also conducted in accordance with the ‘Specification for composted materials’ (PAS 100; BSI 2002). F1 tomato seeds (variety Shirley, Sutton Seeds, UK) were placed in the prescribed mixture of a peat-based growth medium (PBGM) and test compost (1 : 2 ratio by volume of compost to PBGM base mix) in seed trays and maintained with regular watering at a temperature of 20–25°C in a natural light greenhouse in early summer 2005 over a 28-day period of the test. Seed germination, fresh plant mass, abnormalities and weed emergence were recorded in accordance with PAS 100.

The compost bin systems functioned as a low temperature composting environment between 15°C and 18°C in November at the start of the experiment. The temperature dropped to a low of approximately 8–10°C in January/February/March and then rose again to approximately 14°C in May. The composter bin temperatures were considerably lower than specified (20–30°C) in the OK Compost Home standard ( ) but reflect the typical seasonal temperatures in the southeast of the UK. All composter bins showed an acceptable level of reduction in biomass volume (approx. 50%) during the composting period. The temperature profiles of the bins and the degradation of their contents were largely consistent across the whole study.

The visual assessment showed that complete disintegration and incorporation of the starch trays into the compost matrix had occurred after 90 days of composting. The paper-plate material was also extensively broken down over the composting period, although it was possible to distinguish elements of the original plate material after 180 days, despite their being heavily discoloured and lacking structural integrity. The PLA polymer showed no visual evidence of microbial breakdown after 180 days, although some fragments had broken off from the trays. This was not considered to be disintegration as a result of biodegradation but was attributed to disturbance of the bins and mechanical damage when retrieving samples.

The mass loss (as an indicator of the biodegradation) data for the full range of material types as small specimens are presented in and for the whole units in . From approximately 90 days exposure, three groups of materials could be clearly distinguished:

  1. The fast degraders (starch-based polymers and the plant fibre-base silvergrass) exhibiting mass losses of approximately 80 per cent.

  2. The medium degraders (wood fibre-based paper and the coconut fibre) with mass losses of approximately 40 per cent.

  3. The slow degraders (PLA, PP with additives and starch/PCL) with negligible mass loss <5 per cent.

This differentiation of the three groups was then maintained to the conclusion of the experiment at 180 days ( ). The fast degraders lost approximately 90 wt% and became visually indistinguishable from their sealed packets; the medium degraders lost approximately 50 wt% and remained recognizable on close inspection. The slow degraders lost typically less than 5 wt% and were clearly recognizable.

The results for MC assessment showed that fast and medium degraders absorbed moisture readily during the composting process, typically ranging from 100 to 300 per cent for the starch and fibre materials over the 30- to 180-day period. The slow degrader group exhibited very low levels of moisture absorption with the starch/PCL, PP/starch and PLA typically below 10 per cent and the PP/modifiers below 1 per cent.

The results of the PAS 100 bioassay (data not shown) showed that composts derived from the composters containing whole packaging units (starch, paper and PLA) and from the controls gave equal or higher seed germination rates and equivalent or better fresh seedling weights compared with the growth medium base alone (an exception was one PLA compost bin that had a 21 per cent reduction in seedling fresh weight). All the amended composts failed the weed criterion of PAS 100, but this is expected because low-temperature composting systems do not achieve sterilization of weed seeds.

This study has shown that biodegradable packaging materials exhibited a wide range of biodegradation properties in this simulated home composting system run under non-thermophilic conditions (a regime where mesophilic micro-organisms dominate). It is clear that this mesophilic home composting condition may be less favourable for biodegradation than those specified in some standards. For instance, the home composting system used in this study operated over a temperature range of approximately 5–18°C rather than the 20–30°C range specified in the OK Compost Home standard. The fast degrader bioplastics, predominantly based on high levels of starch and the grass fibre/starch composite, were readily biodegraded in the home composting system. The medium degraders based on wood or coconut fibres exhibited mass losses of approximately 50 per cent over the composting period. The easily fragmentable nature of the residual material at the end of the 180-day period enabled the medium degraders to be readily incorporated into the compost matrix and we conclude that medium degraders would be acceptable in terms of disintegration. The extent of biodegradation of these materials, however, failed to satisfy the >90 per cent requirement within 180 days of BS EN 13432. How this may change should the test be extended to 360 days (as in the OK Compost Home standard) and whether this can be mitigated (as for cellulose residues in farm compost) remain to be studied further. The slow degraders (e.g. combined starch/biodegradable polyester formulation and PLA), including bioplastic polymers certified as compostable under EN 13432 conditions, exhibited either no or very low levels of biodegradation and fragmentation over the composting period. Although greater degradation may be achieved over longer periods (e.g. expansion to 360 days), elevated temperature around 60°C has been shown to be a crucial parameter, enabling the induction of biodegradation of polymers such as PLA (e.g. Agarwal et al. 1998; Scott & Wiles 2001; Tokiwa & Jarerat 2004). Such temperatures are clearly lacking in home composting systems of the type modelled. The seed germination study indicated that composts made from green waste incorporating approximately 6 per cent by mass of home composted starch or paper trays give growth media that support good seed germination and seedling development. Although similar results were also achieved with compost incorporating non-biodegraded PLA materials, it must be noted that the compost with PLA trays would fail the disintegration requirements set in the OK Compost Home as the PLA trays remained almost intact. Inhibition of seedling development, in composts with degradable PE and control composts from open-windrow systems, has been found by Davis et al. (2005).

It is clear from this research that several biodegradable packaging materials can be processed in home composting systems and yield compost materials suitable for plant growth. This capability will enable such materials to be disposed of in well-run home composting systems and result in waste diversion from municipal waste streams. However, we have also demonstrated that a number of packaging materials that typically biodegrade well in industrial, thermophilic high-temperature composting systems failed to biodegrade adequately in home composting environments that operate as low temperature, mesophilic environments.

At a practical level, these results suggest that it is vital to clearly distinguish biodegradable packaging materials that can be expected to biodegrade under ambient, mesophilic conditions typically found in UK home composting systems from those that biodegrade under the complete thermophilic–mesophilic (55–65°C) regime of an industrial composting systems. Labelling schemes and consumer education and information should support such a distinction.

Are you interested in learning more about custom  compostable plastic bag? Contact us today to secure an expert consultation!